
 1

Course code: 750113
Course Title:

Programming Fundamentals(1)

Course prerequisite (s) and/or corequisite(s): Course Level: 1

Credit hours: 3 Lecture Time:

E C DR FR UR

Academic Staff Specifics

E-mail Address Office Hours
Office No. and

Location
Rank Name

fnajjar@philadelphia.edu.jo
Su Tu

09:30 11:00

IT

Office:318

Assistance

Professor
Firas Najjar

The Learning Style Used in Teaching the Course

tyleSearning LThe

 Blended Learning

Electronic Learning

Face-to-Face Learning

Percentage
Blended Electronic Face-to-

Face

 100%

Course/Module Description:

This module focuses on problem solving strategies and the use of algorithmic language to describe

such problem solving. It introduces the principles of procedural programming, data types, control

structures, data structures and functions, data representation on the machine level. Various problems

are considered to be solved using C-like procedural programming language.

Course/Module Objectives:

This module aims to introduce computer programming and emphasis in problem solving on the

fundamentals of structured design using the principles of Top Down problem solving strategy

(divide and conquer). This includes development, testing, implementation, documentation.

The module also aims to explore the logic of programming via the algorithm concepts and

implement them in programming structures including functions, arrays, and pointers.

QFO-AP-VA-008 : خطة المادة الدراسية اسم النموذج : رمز النموذج

 جامعة فيلادلفيا

Philadelphia

University

 (Rev) : رقم الإصدار 2
نائب الرئيس للشؤون الجهة المصدرة:

 الأكاديمية

 : تاريخ الإصدار 4-5-2021
 اللجنة العليا لضمان الجودة الجهة المدققة :

 دد صفحات النموذج : ع 4

M

k

=

X

X

d

d

h

h

g

h

g

g

j

mailto:fnajjar@philadelphia.edu.jo

 2

Course/ module components

• Textbook:

- D.S. Malik , Thomson, C++ Programming: From Problem Analysis to Program Design, 8th

Edition, Course Technology, 2018.

• Supporting material(s): Lectures handouts

Introduction to Computer Science and Programming (Spring 2011) (MIT)

Introduction to C++ (MIT)

Teaching methods:

Duration: 16 weeks, 80 hours in total

Lectures: 32 hours (2 hours per week),

Tutorials: 16 hours (1 per week),

Laboratories: 32 hours, 2 per week

Learning outcomes

A- Knowledge and understanding

 A2. Know & understand a wide range of principles and tools available to the software developer,

such as design methodologies, choice of algorithm, language, software libraries and user

interface technique:

A4. Know & understand a wide range of software and hardware used in development of computer

systems

A5. Know & understand the professional and ethical responsibilities of the practising computer

professional including understanding the need for quality, security, and computer ethics.

B- Intellectual skills (thinking and analysis).

B1. Analyze a wide range of problems and provide solutions through suitable algorithms, structures,

diagrams, and other appropriate methods
 B4. Practice self learning by using the e-courses

C- Practical skills

C3. Work effectively with and for others.

C4. Strike the balance between self-reliance and seeking help when necessary in new situations

C5. Display personal responsibility by working to multiple deadlines in complex activities

D- Transferable Skills

D2. Prepare and deliver coherent and structured verbal and written technical reports.

D4. Use the scientific literature effectively and make discriminating use of Web resources

D5. Design, write, and debug computer programs in appropriate languages

Learning outcomes achievement

• Development: A2, A4, and A5 are developed through the lectures and laboratory sessions.

B1, D5, C3, and C4 are developed trough Tutorials and Lab sessions,

B4, D2, D4, D5, and C5 are developed through Homework

• Assessment : A2, A4, A5, B1, D5, and C4 and are assessed through Quizzes, written

exams, and Practical Works Exams.

B4, D2, D4, D5, and C5 are assessed through Homework Exam.

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-introduction-to-c-january-iap-2011

 3

Assessment instruments

Allocation of Marks

Mark Assessment Instruments

30% Mid Exam

40% Final examination

30% Lab works, Quizzes, and tutorial contributions

100% Total

 Course/Module Academic Calendar

Week Basic and support material to be covered Homework/reports and

their due dates

(1)

Problem Solving: process, Analyze (requirement,

Design algorithm, Tracing algorithm, Example,

Design problems) Tutorial 1

Lab work #1
(Get started with C++ language

environment program editing,

compiling, executing, debugging)

(2) Problem Analysis: Algorithm discovery, Algorithm

design strategies, Stepwise refinement, Control

requirements, Implementing algorithm,

Conclusion Tutorial 2

Lab work #2

(3)

Data Definition Structures: Types, constants,

variables, Expressions: Arithmetic, Logical;

Precedence rules; Tutorial 3

Lab work #3

(4)

Control Structures: Sequencing; Input and

output statements; Assignment statement;

Tutorial 4

Lab work #4

(5)

Control Structures: Selection: one-way (if ..

then), two-way (if .. then .. else), multiple

(switch); Tutorial 5

Lab work #5

(6)
Control Structures: Repetition (counter-controlled

loop); Tutorial 6

Lab work #6

(7)

First

examination

Control Structures: Repetition (Conditional

Loop); Tutorial 7
Lab work #7

(8)
Control Structures: Nested Loops, Break and

Continue Tutorial 8

Lab work #8

(9)
Control Structures: Combination; Tutorial 9 Lab work #9

(10) Functions: Parameters definition and passing

(functions depth look); prototypes; Tutorial 10
Lab work #10

(11) Functions: Parameters definition and passing
(Scope: local and global variables), static

variables; Tutorial 11

Lab work #11

(12)

Second

examination

Pointers; Tutorial 12

Lab work #12

(13) Data Structures: One dimensional arrays; Tutorial

13
Lab work #13

 Data Structures: Two dimensional arrays; Lab work #14

 4

(14) Tutorial 14

(15)
Data Structures: Combination (Array + Functions

+ Pointer) Tutorial 15

Lab work #15

(16)

Final

Examination

Review and final Exam

Lab work #16

Expected workload:

On average students need to spend 3 hours of study and preparation for each 50-minute

lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit

without a medical or emergency excuse acceptable to and approved by the Dean of the relevant

college/faculty shall not be allowed to take the final examination and shall receive a mark of zero

for the course. If the excuse is approved by the Dean, the student shall be considered to have

withdrawn from the course.

Module references

Students will be expected to give the same attention to these references as given to the Module

textbook(s)

1. P. Deitel & H. Deitel, C++ How to program, Pearson Education Limited, 2013.

2. Malik, D. S., C++ Programming: Program Design including Data Structures, MA Course

Technology, 2009

3. Friedman Frank and Koffman Elliot B., "Problem Solving, Abstraction and Design using

C++", Pearson Education , 2011.

4. A. Lambert Kenneth and Nance Douglas W., "Understanding Programming and Problem

Solving With C++", PWS Publishing Company, Fourth Edition. 1996

5. Forouzan, B. A. & R. F. Gilberg. "Computer Science: A Structured Programming

Approach using C", Second Edition, Pacific Grove, CA: Brooks/Cole, 2001

6. Bruce Eckel, "Thinking in C++", Second Edition, Prentice Hall, 2000.

7. Herbert Schildt, "Teach Yourself C++", Third Edition, McGraw-Hill. 1998.

8. Lospinoso, J., C++ Crash Course: A Fast-Paced Introduction, No Starch Press; Illustrated

Edition, 2019

9. Code Quickly, Learn C++ Quickly: A Complete Beginner’s Guide to Learning C++, Even If

You’re New to Programming (Crash Course With Hands-On Project) , Drip Digital,

2020

Website(s):
• www.cee.hw.zc.uk/~pjbk/pathways/cpp1/cpp1.html

• www.edm2.com/0507/introcpp1.html

• www.doc.ic.ac.uk/~wjk/C++intro

• www.cprogramming.com/tutorial.html

• www.cs.umd.edu/users/cml/cstyle/ellemtel-rules.html

• www.deakin.edu.au/~agoodman/Ctutorial.html

• www.tldp.org/howto/c++programming.howto.html

• www.vb-bookmark.com/cpptutorial.html

http://www.cee.hw.zc.uk/~pjbk/pathways/cpp1/cpp1.html
http://www.edm2.com/0507/introcpp1.html
http://www.doc.ic.ac.uk/~wjk/C++intro
http://www.cprogramming.com/tutorial.html
http://www.cs.umd.edu/users/cml/cstyle/ellemtel-rules.html
http://www.deakin.edu.au/~agoodman/Ctutorial.html
http://www.tldp.org/howto/c++programming.howto.html
http://www.vb-bookmark.com/cpptutorial.html

 5

DOCUMENTATION FOR PROGRAMS:

(All programming assignments must include at least the following comment lines)

/*TASK: Identify what the program will accomplish */

/* */

/*WRITTEN BY: */

/* */

/*DATE: List creation & modification dates */

/* */

/*VARIABLES: List and give what each represents */

/* */

/*INPUT: Identify the input parameters: Give examples */

/* */

/*OUTPUT: Identify the expected output: Give examples */

/* */

/*ALGORITHM: Briefly describe the algorithm used*/

#include <stdio.h>

main ()

{ … }

(If your program includes any function modules, each function needs to be documented)

/*TASK: Identify what the function accomplishes */

/* */

/*DATE: List creation and modification dates */

/* */

/*WRITTEN BY: */

/* */

/*VARIABLES: List names and what each represents */

/* */

/*INPUT: Identify the input parameters, if any. Give examples */

/* */

/*OUTPUT: Identify the output. Give examples */

/* */

/*ALGORITHM: Briefly describe the algorithm used */

 int function1()

 { … }

